
CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 1 2005

GREG GIBELING & NATHAN BURKHART
[GDGIB, BURKHART]@BERKELEY.EDU

UC BERKELEY
12/16/2005

Towards a Distributed Dataflow
Database Platform

1.0 Introduction

Because they are often spread
over large distances and have the
potential for extremely complicated
synchronization and parallelism
constraints, distributed databases present
an interesting application for dataflow
languages and design techniques.
Furthermore, when the thirty-year
history of dataflow query execution
(iterators) is taken into account, the
pairing is nearly ideal.

This project started as a simple
attempt to add database functionality to
the P2 dataflow system, while taking full
advantage of the fact that the overlay
network and database could be specified
in the same framework. Instead, we
found that the tools and theoretical basis
needed for unifying these disparate
components do not yet exist, providing a
second and more subtle goal for our
research agenda.

In addition to documenting our
implementation of some basic database
operators, this paper describes the
problems associated with unifying
distributed systems design and database
management within the P2 dataflow
framework. In database terms, this
document is a “checkpoint” on what has
turned out to be a very promising vein of
inquiry.

Section 2.0 Background gives
our motivation for the short term goals
of this project. Sections 3.0
Implementation and 4.0 Performance

describe our implementation and its
measured performance, leading to
Section 5.0 Immediate Results, which
analyzes the results of this
implementation. Sections 6.0 Systems
& Platforms and 7.0 Related Work
discuss the overarching implications of
our attempts, and tie these into heavily
related, though seemingly distant,
research. Section 8.0 Conclusions and
Section 9.0 Future Work conclude the
paper.

2.0 Background

In this section we discuss the
motivation for our initial interest in
combining distributed systems design
and database management.

In recent years there has been an
upsurge in interest in peer-to-peer
networks and the applications they
enable. Shady businesses like Napster
aside, there is a tremendous potential for
these systems; we would refer the reader
to [1-4] for more information.

2.1 Chord and DHTs

Chord [4] represents one member
of a growing class of overlay networks
called Distributed Hash Tables (DHTs),
which provide a simple hash table
interface through which it stores data at
logically distributed sites based on some
globally known hash function. This
provides a simple distributed storage
abstraction which obviates the need for a
broadcast lookup to locate the data.

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 2 2005

We discuss Chord in particular,
because it was the subject of the initial
P2 research [2] that fed our work.

In Chord, computers, or nodes,
are arranged in a ring using modulo-2
arithmetic, wherein each node knows the
location of its neighbor in the ring and is
responsible for all data that maps to a
hash key between its own and that of the
next node. To avoid using O(n) time to
transmit a message, where n is the
number of nodes, each node maintains a
table of logarithmically distributed
“fingers” pointing to various nodes
around the ring.

Chord provides a very useful
base layer for many distributed peer-to-
peer services, and can even operate
reliably under high network churn.

2.2 PIER

PIER [1, 5, 6] is a distributed
query processor designed primarily to be
run on peer-to-peer architectures ranging
over potentially millions of nodes.

PIER relies heavily on DHTs,
using them for query dissemination,
indexing, tuple partitioning, operator
implementation, and more. In the name
of abstraction, the system is almost
entirely unaware1 of the underlying
structure of the DHT, using only the
simple hash table interface.

Because PIER has very little
knowledge of the underlying network, it
is unable to take advantage of any
potential performance which could be
gained by said knowledge.

2.3 P2

The P2 project [2] grew out of
attempts [7] to build overlay networks

1 PIER does exploit the multi-hop

routing and callbacks used within the DHT to
implement some dataflow operators, such as
aggregation and join.

using PIER and the dataflow ideas
rediscovered2 and expanded by the Click
[8] team at MIT.

P2, with its specialized Overlog
language, was designed specifically for
constructing overlay networks from
declarative definitions using continuous
queries. However, under the hood, the
result is a fairly straightforward dataflow
system based on both the Click
architecture and source code.

2.4 Open Interface

The goals of this project, as laid
out in the initial proposal, were entirely
focused on implementing database
functionality using the existing elements
in the P2 system. The idea was to
explore possible network-aware database
algorithms that would take advantage of
the flexibility of having the database and
overlay network specified in a single
language: Overlog. In essence, we
wanted to explore the simplicity and
performance benefits which could be
achieved by moving the PIER work into
the P2 framework.

In particular, we felt it should be
possible to clearly specify both the
overlay network and database
functionality, so as to allow us to explore
various ways to map logical to physical
schemas. We will discuss this in more
detail in Section 3.5 Open Interface.

In the course of our work,
however, we uncovered several other
problems which must be addressed
before this is possible. We will discuss
this again in further detail, starting in
Section 5.0 Immediate Results.

2 There is a long history of dataflow

architectures and languages; we will discuss this
in Section 6.2 Dataflow.

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 3 2005

3.0 Implementation
In this section we discuss, several

major design decisions behind and
obstacles to our implementation of
aggregate and join operators in P2. We
will confine ourselves to facts that
directly affected our work, leaving
analysis to Sections 5.0 Immediate
Results and 6.0 Systems & Platforms.

In order to avoid locking
ourselves into a single schema for the
data in the database, our first major
design decision was to implement this
functionality in C++ using the P2
“elements” directly, rather than relying
on Overlog. We discuss this issue in
detail in Section 5.2 System Design and
other possible solutions in Section 6.3
Languages, as it became a clear problem
with our work.

3.1 Storage

The first step in our
implementation was to add the ability to
store data other than that required for
Chord, to the test implementation of
Chord provided by the P2 team.

Shown in the upper-right gray
box in Figure 13, our core storage
facilities consist of the ability to insert
and query all of the tuples in any of a
number of tables at a Chord node. This
is carried out by sending the appropriate
“insertData” or “queryData” tuples
to that node.

This introduces the second major
design decision: using tuples flowing
through the Chord network to represent
queries as well as data.

3.2 Broadcast

In order to support queries over
all nodes, instead of just the one to

3 Figure 1 appears at the end of the

paper, so as to remain readably large.

which the “queryData” tuple is sent,
the second feature implemented was a
broadcast facility.

In order to make this feature fully
general, our third major design decision
was to take advantage of the ability of
the C++ P2 backend to embed tuples as
values within other tuples. Using this
functionality, we simply send a tuple of
the form <broadcast, dest, src,
<data>> around the Chord ring. Upon
receipt, each node sends the tuple to its
predecessor, also extracting the <data>
tuple and looping it back locally.

A simplified block diagram of
the functionality required for this facility
is shown in the “Broadcast” box at the
top of Figure 1.

3.3 Distributed Aggregates

In order to quickly achieve some
basic proof-of-concept functionality, we
chose to implement distributed
aggregation first. Trying to design the
dataflow graph and P2 elements for
aggregation highlighted a number of
vital points regarding the specification of
a distributed database, which are
discussed in later sections.

Primarily, we desired to write the
code for performing aggregations only
once, independent of the data being
aggregated. To this end, we were
obliged to implement a new P2 element:
the Reflection Aggregate. Our need for
this element was one of the major
reasons we worked in C++ rather than
Overlog, because Overlog does not
currently include the ability to work with
custom elements or variable tuple types.

The reflection aggregate element,
as shown in Figure 1, accepts tuples
which describe the aggregate to be
computed in the format
<aggregateData, …, groupKey,

aggField, aggType>: groupKey

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 4 2005

provides the equivalent of the GROUP
BY clause in an SQL query, aggField
is a list of the data fields over which
aggregates should be computed, and
aggType is a list of the aggregates to be
performed, one per field in aggField.

To perform an aggregate over all
of the data in the network, a client would
simply broadcast an aggregateData
tuple, with the result destination set to its
own address.

3.4 Broadcast Join

As with our aggregate
implementation, our join implementation
was designed to provide both baseline
results and explore the integration
between the database and network
overlay code.

We implemented two very
simple join algorithms: a centralized join
and a broadcast join. In the centralized
join, the client simply queries the
complete contents of both tables to be
joined and then performs the join.

The broadcast join, on the other
hand, uses the broadcast base
functionality to broadcast the smaller of
the two tables to all other nodes in the
Chord ring. We had hoped to use this in
conjunction with range partitioning,
which is described in Section 3.5 Open
Interface, in order to improve efficiency.

Again, in order to fully
parameterize the join we used a
Reflection Join element, which accepts
tuples from both tables and a single
“joinStart” tuple: <joinStart, …,
LTable, RTable, LFields,

RFields, joinTypes>. LFields,
RFields, and joinTypes are three
lists that specify the fields in the local
and remote tables and the way in which
to join them (equality and inequality are
currently implemented).

3.5 Open Interface
Because the design of the overlay

network is explicitly known, joins could
be optimized by only involving the
nodes at which relevant data is stored.

Furthermore, the partitioning and
balancing of said data would provide a
bound on the number of nodes involved
with the join. To this end, we explored
the possibility of range-based tuple
clustering and load balancing.

Though it was never directly
implemented, due to the obstacles
mentioned in above sections, we have
written pseudo-code based on the
algorithms presented in [9, 10] that
could be easily implemented in Overlog.

However, the complexity of this
code as it would be written in the C++
P2 back end, in conjunction with our
inability to overhaul the Overlog front
end, kept us from a working
implementation within the time frame of
this project. This has turned out to be
fortunate, as the conclusions and ideas
presented in the last 5 sections of this
paper are a direct result of these
obstacles.

4.0 Performance

In this section we briefly present
some basic performance numbers from
our implementations.

4.1 Test Setup

Currently P2 has been adapted to
compile and run on Fedora Core 3
Linux. Our test machine was an Intel

Pentium4, 3.0GHz with 256MB
SDRAM and a four drive SATA RAID5
array attached to an Escalade 9500
controller.

We compared both centralized
and distributed aggregate and join on
Chord rings ranging from 2 to 12 nodes.
At the high end of this range, we suspect

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 5 2005

our test machine began paging, or that
there may be bugs in some of the
asynchronous event-driven code, based
on the severe drop in performance.

For test data, we inserted pseudo-
random data into one table (two for
join), with a random distribution and a
cardinality proportional to the number of
nodes in the system.

4.2 Distributed Aggregation

Figure 2 shows the cost in
messages of the two methods of
computing an aggregate, as a function of
the number of nodes.

The curves labeled “central”
represent an aggregate over the
distributed data, which is computed at a
central location. The curves labeled
“distributed” represent the situation
described in Section 3.3 Distributed
Aggregates, where the aggregate is
computed independently at each
location.

Message Cost of Aggregation

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11 12

Chord Nodes

M
es

sa
ge

s
(T

up
le

s)

Central Query Central Total Distributed Query Distributed Total
Figure 2: Message Cost of Aggregation

As expected, based on the linear

increase in the cardinality of the input
data, all of the curves in this graph
approximate lines. Notice that the two
“query” curves represent the cost of
distributing just the query tuple, hence
the perfect overlap.

4.3 Broadcast Join
In Figure 3, we present a

comparison of two join algorithms, one
which performs the join at a central
location and one which performs the join
in the Chord ring.

Message Cost of Join

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8 9 10 11

Chord Nodes

M
es

sa
ge

s
(T

up
le

s)

Central Query Central Total Broadcast Query Broadcast Total
Figure 3: Message Cost of Join

As expected based on the

increasing cardinality of the broadcast
data, the messaging costs are polynomial
in the number of nodes.

4.4 Result Bandwidth

Figure 4 shows a relatively
pedestrian graph of result bandwidth as a
function of the number of nodes for all
four experiments. Again, the
polynomial drop in bandwidth under the
broadcast join is to be expected. We
will discuss the implications of these
numbers further in Section 5.3
Performance.

Result Bandwidth

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9 10 11

Nodes

B
an

dw
id

th
 (T

up
le

s/
m

s)

Central Aggregate Distributed Aggregate Broadcast Join Central Join
Figure 4: Result Bandwidth

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 6 2005

5.0 Immediate Results
In this section we describe the

short term results of our implementation
work. We categorize our results by
whether they represent an immediate
success or a systemic problem that we
were unable to overcome in the short
term. Sections 6 through 9 suggest
future research and long term solutions
to these problems.

5.1 Successes

Despite our difficulty with
integrating database functionality, we
are currently able to support distributed
data storage and retrieval on top of a
Chord ring using the P2 dataflow
system. In addition, we have baseline
code on which to build future research.

At present, we can store data and
run lookups, aggregate queries, and joins
over it. The performance numbers in
Section 4.0 Performance are not
surprising or wonderful, but they match
exactly what one would expect from
these implementations.

The bottom line of this project is
that, though we were easily able to add
significant functionality to P2, thanks in
part to the dataflow framework, there
remain a number of major challenges
before our a useful distributed database
can be built.

5.2 System Design

Inarguably, the most significant
problems we encountered during this
project stemmed from the low-order
nature of the Overlog language,
including its inability to handle variable-
length tuples or tuples which contain
other tuples. This forced us to decide
between the potentially major loss of
flexibility incurred by using Overlog and
the significantly increased development

time and complexity due to writing in
C++.

Ultimately, we decided to use
C++ in the hopes that it would let us
explore more issues by allowing
flexibility in the schema of the data in
our distributed database, rather than
forcing it to be fixed within the same
Overlog file as the Chord definition.

After actually attempting to
implement these operators, we have
come to appreciate that P2 and PIER are
systems at opposite ends of a simple
design decision: the level of integration
of overlay network and database. PIER,
by virtue of the hard DHT interface
between the two, separates these
components to the extent that significant
performance gains will be unrealized
due to its inability to exploit correlations
between data, logical locations, and
physical locations.

However, Overlog’s current
inability to separate the underlying
overlay network from the database
forces the programmer to either waste
time working in C++ (though the P2
base code makes this much easier) or to
couple the overlay network to the
database so tightly that the two cannot
easily be independently modified.

Our short-term solution to this
limitation is embodied in the
combination of the three major design
decisions in Section 3.0 Implementation,
and our creation of the “Reflection
Aggregation” and “Reflection Join”
elements. However, we feel that these
are not valid long-term, general
solutions. In Section 6.0 Systems &
Platforms, we analyze this more
completely, and provide possible
solutions.

One of the original key points of
this project was to explore algorithms
and operators for overlay network-aware

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 7 2005

database query processing. While
writing these operators in C++ is not
totally impractical4, the fact remains that
it would be a long and arduous task to
implement the many operators that have
been suggested to date. Unfortunately,
there are limitations imposed by the
Overlog language itself that present
significant obstacles to full-scale query
processing. Potential improvements,
such as the ability to include tuples
within tuples or to deal with variable-
length tuples, deserve further research.
Issues such as semantics and typing rules
become critical once these higher-level
constructs become part of a language.
See Section 6.3 Languages for a further
discussion.

5.3 Performance

Our primary goal in presenting
the performance graphs in the previous
section was clearly not to demonstrate
that our implementation is efficient, but
rather to demonstrate that it performs
exactly as expected. This is a sign that
the P2 dataflow framework, even when
used directly in C++, represents a
significant step forward in the
abstraction of both overlay network and
database functionality.

However, the fact remains that
thus far this abstraction has come at a
heavy performance price. While the P2
group showed respectable results [2] for
Chord, large scale databases have much
more demanding performance targets:
high end systems are beyond the
1MtpmC on the TPC-C benchmark, and
even lower end systems often manage
10,000tpmC. During our tests, some
queries took up to a second over a mere
200 data points. This means the current
implementation is, generously, between

4 Our implementations are on the order

of 500 lines of C++, plus ~300 lines of test code.

3 and 8 orders of magnitude slower than
the top of the line. While we
acknowledge that this is an unfair
comparison, the fact is that with this
performance disparity there remains no
reason to consider this work for a
production system. We offer possible
solutions to this issue in Section 6.0
Systems & Platforms.

6.0 Systems & Platforms

As described in Section 5.2
System Design, the P2 and PIER
systems represent opposite ends of a
design spectrum, where PIER uses an
opaque interface between the underlying
overlay network and database and P2
would ideally use Overlog, requiring the
full integration of the two.

Our short term solution was to
try and find a middle ground, and we
settled on using the P2 C++ back end.
This allowed us to leverage the useful
dataflow framework without
constraining us to those computational
structures expressible in Overlog.

In this section we propose and
outline a platform for studying this
design space, allowing systems from
both ends of that spectrum to be
described in one framework and
language. Our suggestions are drawn
directly from the problems we
encountered during this work, as
outlined in above sections.

6.1 The Design Space

Given that PIER and P2 appear,
in many ways, to be at opposite ends of
the design space, the natural question
arises: “What lies in the middle?” In
fact, the most successful systems
projects generally grow out of some
practical compromise between extremes.

Based on the conceptual
simplicity and natural mapping from

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 8 2005

traditional database iterators to a
dataflow framework, systems like P2
provide a very natural way to explore
this space. At this point, the problem
becomes not, “How do we build a
distributed database?” but, “How do we
build distributed database systems?”
The solution no longer lies in the P2
architecture, but in a combination of
ideas from dataflow architectures,
languages, and database systems
research.

Fundamental questions about
distributed systems remain hard to
answer, in part because we lack a
common high level framework and
language with which to describe
algorithms in such a way as to make
them executable.

P2 and Overlog are examples of
the inherent promise of this work.
Despite our problems with Overlog, we
at no point wish to contradict the
conclusions of [2]. Furthermore,
without the dataflow code base of P2, we
could never have made significant
progress on this problem in so short a
time.

However, given a more powerful
set of tools, as we will outline below, we
might have met our original, even more
ambitious goals.

In this section, we have outlined
a case for a distributed dataflow database
platform: a set of research tools for
studying distributed database systems.

6.2 Dataflow

In this section, we provide a
formal justification for the use of a
dataflow framework. Beyond their
inherent simplicity and natural match to
existing database systems, dataflow
systems offer a chance to separate the
concepts of “synchronization” and
“scheduling” of data, while managing

the parallelism is a human
understandable formalism.

Synchronization refers to the
need for all inputs to be present before a
computation can take place, such as the
two inputs to an add element.
Scheduling refers to the decision of
when to actually perform that addition.
Notice that the point of synchronization
(when the second operand arrives)
implies only the earliest point of
scheduling.

In general, dataflow formalisms
provide an effective way to express this
style of “minimum requirements” for
program execution.

Interestingly, even without the
more formal dataflow language work,
the structure of P2 actually suggests a
few simple ways to parallelize the
system overall: by simply partitioning a
node into multiple dataflow graphs
connected by explicit IPC, the various
graphs can easily be executed in parallel
without fear of adverse interactions.
However, the primary justification for
this split relies on the fact that dataflow
frameworks are derived from message
passing systems, and therefore generally
eschew globally shared state,

Furthermore, there exists well-
established research in dataflow
languages and architectures, both of
which have significant results that can
easily be carried into this work. We
touch on this again in Section 7.0
Related Work.

6.3 Languages

P2 is essentially a high-level
interpreter for a first-order dataflow
language. This has some serious
implications for both performance and
usability, the two major obstacles to our
implementation work.

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 9 2005

Low-order languages and
programming systems typically severely
complicate the expression of
complicated algorithms and systems;
simple examples can be drawn from
classic type systems literature [11] and
the relative complexity of a program
written in assembly language versus
Java.

In fact, we hypothesize that the
success of Overlog is exactly due to the
fact that it abstracts the details of the P2
elements: namely connections, push and
pull dataflow, and storage, behind a
simple, easily readable language.
Overlog raises the level of language
abstraction, reducing the unnecessary
details inherent in an implementation,
e.g. of Chord directly in C++.

This bears direction on our
second major design decision, the
representation of queries as tuples and
our use of hierarchical tuples. By using
a dataflow language with higher level
constructs, we can capture all the
benefits of these ideas without resorting
to C++. In addition, any research
platform must provide a way to specify
new database operators. Operators in
C++ may be efficient, especially when
compared to those written in Overlog,
but dataflow compiler and architecture
research has much more to offer [12-14].
Of particular interest is the suggestion
that a type system could reduce a higher
order language to one simple enough to
implement, even in hardware [15].

As we move forward, exact
semantics and typing rules will be
required in order to build any large
system. The lack of these facilities at
the C++ level significantly retarded our
work, as did the textual overhead of
working in C++. Ideally, a dataflow
language should be exponentially more
expressive for systems like this, allowing

plug-in style components similar to
those used in reconfigurable hardware
systems like JHDL (see Figure 5 of
[16]).

7.0 Related Work

In this section we tie the ideas of
the previous section into several widely
different fields of research. This section
builds on 6.2 Dataflow by suggesting
past dataflow work on which we can
capitalize.

7.1 Related Systems Work

Both in theoretical terms and in
terms of the actual implementation code,
P2 is closely based on the Click Modular
Router from MIT [8].

However, a number of recent
hardware-centric projects have also
adopted dataflow or process network
frameworks (Lee shows the two to be
very similar [17]). For example, the
RAMP [18, 19] project, with which G.
Gibeling is currently heavily involved, is
attempting to design a dataflow-based
framework and language (RDL). The
original goal was to simulate multi-
processor computer architectures;
however, the full extent of
RAMP/RDL’s usage is currently
unknown, as the language is still in flux.

In a related vein, the Liberty
project [20] at Princeton has designed a
language, compiler, and simulation
platform for designing low level
hardware in a style similar to RDL.

In addition, dataflow design
patterns have surfaced in recent
distributed systems such as Google's
MapReduce [21], which we mention for
three reasons: it is easily applicable to a
wide class of problems, it allows
massive parallelism, and it represents a
small subset of the overall promise of
dataflow systems.

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 10 2005

For a recent survey of dataflow
related research we refer the reader to
[22].

7.2 Related Database Work

Clearly the most closely related
database research has already been
discussed at length throughout this
paper. However, research projects such
as Eddies [23], TelegraphCQ [24], and
SteMs [25] will fit well into an expanded
dataflow database platform.

8.0 Conclusions

In light of the number of
obstacles encountered during this
project, it should be clear that there is
still an immense amount of work to be
done.

While this project was only semi-
successful at providing a working
solution, it does provide a foundation for
our future research and a sketch what
that will be. In addition, our results
suggest interesting ties to existing
research in significantly disparate fields
such as languages, compilers, theory,
architecture, and digital circuits.

New tools will be required to
permit databases, overlay networks, and
systems issues to be studied within a
common platform. This will allow
detailed study of, among other things,
the tradeoff involved in determining the
level of abstraction between the overlay
network and query processor.

Distributed systems represent a
continuously open field of research of
which distributed databases are a small
fraction, despite the magnitude of the
problems there alone. In this paper we
have presented our attempts and ideas
for advancing both fields.

9.0 Future Work
In addition to giving suggestions

for the next step in our research, this
section covers the questions and ideas
which originally attracted our interest in
this field, which remain unstudied.

Based on our attempts chronicled
in this paper, we conclude that the next
logical step is to begin design and
implementation of a distributed dataflow
database platform. P2 should be
considered a proof of concept for this
platform, as it has allowed us to get this
far.

With the proper platform in
place, the next step is to study
partitioning data in a widely distributed
system. This has major implications for
performance, as described by Ganesan
[9] and in Section 3.5 Open Interface.

We also know of no major
attempts to study distributed metadata so
far. Metadata is one of the big successes
of the DBMS world, as it allows a
plethora of optimizations at the query
planning level.

In a high level language,
compiler optimizations and query
optimizer research converge on the same
problem, suggesting that the two areas of
research may cross-pollinate.

In fact, Eddies [23] and SteMs
[25] could easily be realized in a
dataflow framework, perhaps to the
extent that in many non-deterministic
languages such as [26] an Eddy can
almost be written as a first class
language primitive.

Storage and its permanence
remain open questions in the context of
distributed databases. Researchers often
disagree on the utility of permanent
storage, and we know of few proposals
aiming to provide it.

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 11 2005

10.0 References

1. Huebsch, R., et al., Querying the

Internet with PIER. 2003. p. 1-12.
2. Loo, B.T., et al., Implementing

Declarative Overlays. 2005: UC
Berkeley. p. 1-16.

3. Rodriguez, A., et al. MACEDON:
methodology for automatically creating,
evaluating, and designing overlay
networks. in First Symposium on
Networked Systems Design and
Implementation (NSDI '04). San
Francisco, CA. 2004.

4. Stoica, I., et al. Chord: a scalable peer-
to-peer lookup service for Internet
applications. in ACMSIGCOMM 2001
Conference. Applications,
Technologies, Architectures, and
Protocols for Computer
Communications. San Diego, CA. 2001.

5. Huebsch, R., et al., The Architecture of
PIER: an Internet-Scale Query
Processor. 2005. p. 1-16.

6. Harren, M., et al., Complex Queries in
DHT-based Peer-to-Peer Networks.
2005. p. 1-6.

7. Loo, B.T., J.M. Hellerstein, and I.
Stoica. Customizable Routing with
Declarative Queries. in Third Workshop
on Hot Topics in Networks (HotNets-
III). 2004.

8. Kohler, E., et al., The Click modular
router. ACM Transactions on Computer
Systems, 2000. 18(3): p. 263-97.

9. Ganesan, P., M. Bawa, and H. Garcia-
Molina. Online Balancing of Range-
Partitioned Data with Applications to
Peer-to-Peer Systems. in 30th VLDB
Conference. 2004. Toronto, Canada:
Stanford University.

10. Ganesan, P. and M. Bawa, Distributed
Balanced Tables: Not Making a Hash of
it all. 2003. p. 1-5.

11. Cardelli, L. Type systems. in ACM 50th
Anniversary Symposium: Perspectives
in Computer Science. USA. 1996. 1996.

12. Beck, M., R. Johnson, and K. Pingali,
From control flow to dataflow. Journal
of Parallel & Distributed Computing,
1991. 12(2): p. 118-29.

13. Papadopoulos, G.M. and D.E. Culler.
Monsoon: an explicit token-store
architecture. in Seattle, WA. 1990.

14. Dennis, J.B. and D.P. Misunas. A
preliminary architecture for a basic
data-flow processor. in Houston, TX.
1975.

15. Buscemi, M.G. and V. Sassone. High-
level Petri nets as type theories in the
join calculus. in Proceedings of ETAPS
2001 - European Joint Conference on
Theory and Practice of Software
(ETAPS). Genova, Italy. 2-6 April 2001.
2001.

16. Bellows, P. and B. Hutchings. JHDL-an
HDL for reconfigurable systems. in
Proceedings IEEE Symposium on
FPGAs for Custom Computing
Machines. Napa Valley, CA. 1998.

17. Lee, E.A. and T.M. Parks, Dataflow
process networks. Proceedings of the
IEEE, 1995. 83(5): p. 773-801.

18. Gibeling, G., A. Schultz, and K.
Asanovic, RAMP Architecture &
Description Language. 2005, UC
Berkeley.

19. Wawrzynek, J., et al., RAMP Research
Accelerator for Multiple Processors.
2005.

20. Manish, V., N. Vachharajani, and D.I.
August. The Liberty structural
specification language: a high-level
modeling language for component
reuse. in 2004 ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI'04).
Washington, DC. 2004.

21. Dean, J. and G. Sanjay. MapReduce:
simplified data processing on large
clusters. in Proceedings of the Sixth
Symposium on Operating Systems
Design and Implementation (OSDI'04).
San Francisco, CA. 2004.

22. Gibeling, G., The Art of Controlled
Chaos: A Survey of Dataflow &
Concurrent Programming. 2005, UC
Berkeley.

23. Avnur, R. and J.M. Hellerstein. Eddies:
continuously adaptive query processing.
in 2000 ACM SIGMOD. International
Conference on Management of Data.
Dallas, TX. 2000.

24. Chandrasekaran, S., et al.
TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. in
CIDR. 2003.

25. Vijayshankar, R., A. Deshpande, and
J.M. Hellerstein. Using state modules
for adaptive query processing. in

CS262A Fall 2005 Towards a Distributed Dataflow Database Platform

UCB 12 2005

Proceedings 19th International
Conference on Data Engineering.
Bangalore, India. IEEE Comput. Soc.
Tech. Committee on Data Eng. 5-8
March 2003. 2003.

26. Dijkstra, E.W., Guarded commands,
nondeterminacy and formal derivation
of programs. Communications of the
ACM, 1975. 18(8): p. 453-7.

�
��
�
�
�
�
���
�
	

�

�
�
�
�

���
�
�
����

�
��
�
�

�
�
�
�
�

��
	
�
��

�
��
�
�
�
�
���
�
	

�

�
�
�
�
�

�
�
���
�
���
�
��
�
��

�
��
�
�
�
�
	
��

�
��
�
�
�
�

�
�
�
��
�
�
!
�
�

�
�
�
�
��
�
�
�
!
�
�

�
�
���
�
���
�
�

"
#
#
��
#
�
��

�
�
�
�$

�
�
�
�
�
�
�
%
��

Figure 1: Database Operators and Simplified Chord in P2

