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1.0 Introduction 

Because they are often spread 
over large distances and have the 
potential for extremely complicated 
synchronization and parallelism 
constraints, distributed databases present 
an interesting application for dataflow 
languages and design techniques. 
Furthermore, when the thirty-year 
history of dataflow query execution 
(iterators) is taken into account, the 
pairing is nearly ideal. 

This project started as a simple 
attempt to add database functionality to 
the P2 dataflow system, while taking full 
advantage of the fact that the overlay 
network and database could be specified 
in the same framework.  Instead, we 
found that the tools and theoretical basis 
needed for unifying these disparate 
components do not yet exist, providing a 
second and more subtle goal for our 
research agenda. 

In addition to documenting our 
implementation of some basic database 
operators, this paper describes the 
problems associated with unifying 
distributed systems design and database 
management within the P2 dataflow 
framework.  In database terms, this 
document is a “checkpoint” on what has 
turned out to be a very promising vein of 
inquiry. 

Section 2.0 Background gives 
our motivation for the short term goals 
of this project.  Sections 3.0 
Implementation and 4.0 Performance 

describe our implementation and its 
measured performance, leading to 
Section 5.0 Immediate Results, which 
analyzes the results of this 
implementation.  Sections 6.0 Systems 
& Platforms and 7.0 Related Work 
discuss the overarching implications of 
our attempts, and tie these into heavily 
related, though seemingly distant, 
research.  Section 8.0 Conclusions and 
Section 9.0 Future Work conclude the 
paper. 

 
2.0 Background 

In this section we discuss the 
motivation for our initial interest in 
combining distributed systems design 
and database management. 

In recent years there has been an 
upsurge in interest in peer-to-peer 
networks and the applications they 
enable.  Shady businesses like Napster 
aside, there is a tremendous potential for 
these systems; we would refer the reader 
to [1-4] for more information. 

 
2.1 Chord and DHTs 

Chord [4] represents one member 
of a growing class of overlay networks 
called Distributed Hash Tables (DHTs), 
which provide a simple hash table 
interface through which it stores data at 
logically distributed sites based on some 
globally known hash function.  This 
provides a simple distributed storage 
abstraction which obviates the need for a 
broadcast lookup to locate the data. 
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We discuss Chord in particular, 
because it was the subject of the initial 
P2 research [2] that fed our work. 

In Chord, computers, or nodes, 
are arranged in a ring using modulo-2 
arithmetic, wherein each node knows the 
location of its neighbor in the ring and is 
responsible for all data that maps to a 
hash key between its own and that of the 
next node.  To avoid using O(n) time to 
transmit a message, where n is the 
number of nodes, each node maintains a 
table of logarithmically distributed 
“fingers” pointing to various nodes 
around the ring. 

Chord provides a very useful 
base layer for many distributed peer-to-
peer services, and can even operate 
reliably under high network churn. 

 
2.2 PIER 

PIER [1, 5, 6] is a distributed 
query processor designed primarily to be 
run on peer-to-peer architectures ranging 
over potentially millions of nodes. 

PIER relies heavily on DHTs, 
using them for query dissemination, 
indexing, tuple partitioning, operator 
implementation, and more.  In the name 
of abstraction, the system is almost 
entirely unaware1 of the underlying 
structure of the DHT, using only the 
simple hash table interface. 

Because PIER has very little 
knowledge of the underlying network, it 
is unable to take advantage of any 
potential performance which could be 
gained by said knowledge. 

 
2.3 P2 

The P2 project [2] grew out of 
attempts [7] to build overlay networks 

                                                 
1 PIER does exploit the multi-hop 

routing and callbacks used within the DHT to 
implement some dataflow operators, such as 
aggregation and join. 

using PIER and the dataflow ideas 
rediscovered2 and expanded by the Click 
[8] team at MIT. 

P2, with its specialized Overlog 
language, was designed specifically for 
constructing overlay networks from 
declarative definitions using continuous 
queries.  However, under the hood, the 
result is a fairly straightforward dataflow 
system based on both the Click 
architecture and source code. 

 
2.4 Open Interface 

The goals of this project, as laid 
out in the initial proposal, were entirely 
focused on implementing database 
functionality using the existing elements 
in the P2 system.  The idea was to 
explore possible network-aware database 
algorithms that would take advantage of 
the flexibility of having the database and 
overlay network specified in a single 
language: Overlog.  In essence, we 
wanted to explore the simplicity and 
performance benefits which could be 
achieved by moving the PIER work into 
the P2 framework. 

In particular, we felt it should be 
possible to clearly specify both the 
overlay network and database 
functionality, so as to allow us to explore 
various ways to map logical to physical 
schemas.  We will discuss this in more 
detail in Section 3.5 Open Interface. 

In the course of our work, 
however, we uncovered several other 
problems which must be addressed 
before this is possible.  We will discuss 
this again in further detail, starting in 
Section 5.0 Immediate Results. 

 

                                                 
2 There is a long history of dataflow 

architectures and languages; we will discuss this 
in Section 6.2 Dataflow. 
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3.0 Implementation 
In this section we discuss, several 

major design decisions behind and 
obstacles to our implementation of 
aggregate and join operators in P2.  We 
will confine ourselves to facts that 
directly affected our work, leaving 
analysis to Sections 5.0 Immediate 
Results and 6.0 Systems & Platforms. 

In order to avoid locking 
ourselves into a single schema for the 
data in the database, our first major 
design decision was to implement this 
functionality in C++ using the P2 
“elements” directly, rather than relying 
on Overlog.  We discuss this issue in 
detail in Section 5.2 System Design and 
other possible solutions in Section 6.3 
Languages, as it became a clear problem 
with our work. 

 
3.1 Storage 

The first step in our 
implementation was to add the ability to 
store data other than that required for 
Chord, to the test implementation of 
Chord provided by the P2 team. 

Shown in the upper-right gray 
box in Figure 13, our core storage 
facilities consist of the ability to insert 
and query all of the tuples in any of a 
number of tables at a Chord node.  This 
is carried out by sending the appropriate 
“insertData” or “queryData” tuples 
to that node. 

This introduces the second major 
design decision: using tuples flowing 
through the Chord network to represent 
queries as well as data. 

 
3.2 Broadcast 

In order to support queries over 
all nodes, instead of just the one to 

                                                 
3 Figure 1 appears at the end of the 

paper, so as to remain readably large. 

which the “queryData” tuple is sent, 
the second feature implemented was a 
broadcast facility. 

In order to make this feature fully 
general, our third major design decision 
was to take advantage of the ability of 
the C++ P2 backend to embed tuples as 
values within other tuples.  Using this 
functionality, we simply send a tuple of 
the form <broadcast, dest, src, 
<data>> around the Chord ring. Upon 
receipt, each node sends the tuple to its 
predecessor, also extracting the <data> 
tuple and looping it back locally. 

A simplified block diagram of 
the functionality required for this facility 
is shown in the “Broadcast” box at the 
top of Figure 1. 

 
3.3 Distributed Aggregates 

In order to quickly achieve some 
basic proof-of-concept functionality, we 
chose to implement distributed 
aggregation first.  Trying to design the 
dataflow graph and P2 elements for 
aggregation highlighted a number of 
vital points regarding the specification of 
a distributed database, which are 
discussed in later sections. 

Primarily, we desired to write the 
code for performing aggregations only 
once, independent of the data being 
aggregated.  To this end, we were 
obliged to implement a new P2 element: 
the Reflection Aggregate.  Our need for 
this element was one of the major 
reasons we worked in C++ rather than 
Overlog, because Overlog does not 
currently include the ability to work with 
custom elements or variable tuple types. 

The reflection aggregate element, 
as shown in Figure 1, accepts tuples 
which describe the aggregate to be 
computed in the format 
<aggregateData, …, groupKey, 

aggField, aggType>: groupKey 
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provides the equivalent of the GROUP 
BY clause in an SQL query, aggField 
is a list of the data fields over which 
aggregates should be computed, and 
aggType is a list of the aggregates to be 
performed, one per field in aggField. 

To perform an aggregate over all 
of the data in the network, a client would 
simply broadcast an aggregateData 
tuple, with the result destination set to its 
own address. 

 
3.4 Broadcast Join 

As with our aggregate 
implementation, our join implementation 
was designed to provide both baseline 
results and explore the integration 
between the database and network 
overlay code. 

We implemented two very 
simple join algorithms: a centralized join 
and a broadcast join.  In the centralized 
join, the client simply queries the 
complete contents of both tables to be 
joined and then performs the join. 

The broadcast join, on the other 
hand, uses the broadcast base 
functionality to broadcast the smaller of 
the two tables to all other nodes in the 
Chord ring.  We had hoped to use this in 
conjunction with range partitioning, 
which is described in Section 3.5 Open 
Interface, in order to improve efficiency. 

Again, in order to fully 
parameterize the join we used a 
Reflection Join element, which accepts 
tuples from both tables and a single 
“joinStart” tuple: <joinStart, …, 
LTable, RTable, LFields, 

RFields, joinTypes>.  LFields, 
RFields, and joinTypes are three 
lists that specify the fields in the local 
and remote tables and the way in which 
to join them (equality and inequality are 
currently implemented). 

 

3.5 Open Interface 
Because the design of the overlay 

network is explicitly known, joins could 
be optimized by only involving the 
nodes at which relevant data is stored. 

Furthermore, the partitioning and 
balancing of said data would provide a 
bound on the number of nodes involved 
with the join.  To this end, we explored 
the possibility of range-based tuple 
clustering and load balancing. 

Though it was never directly 
implemented, due to the obstacles 
mentioned in above sections, we have 
written pseudo-code based on the 
algorithms presented in [9, 10] that 
could be easily implemented in Overlog. 

However, the complexity of this 
code as it would be written in the C++ 
P2 back end, in conjunction with our 
inability to overhaul the Overlog front 
end, kept us from a working 
implementation within the time frame of 
this project.  This has turned out to be 
fortunate, as the conclusions and ideas 
presented in the last 5 sections of this 
paper are a direct result of these 
obstacles. 

 
4.0 Performance 

In this section we briefly present 
some basic performance numbers from 
our implementations. 

 
4.1 Test Setup 

Currently P2 has been adapted to 
compile and run on Fedora Core 3 
Linux.  Our test machine was an Intel 

Pentium4, 3.0GHz with 256MB 
SDRAM and a four drive SATA RAID5 
array attached to an Escalade 9500 
controller. 

We compared both centralized 
and distributed aggregate and join on 
Chord rings ranging from 2 to 12 nodes.  
At the high end of this range, we suspect 
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our test machine began paging, or that 
there may be bugs in some of the 
asynchronous event-driven code, based 
on the severe drop in performance. 

For test data, we inserted pseudo-
random data into one table (two for 
join), with a random distribution and a 
cardinality proportional to the number of 
nodes in the system. 

 
4.2 Distributed Aggregation 

Figure 2 shows the cost in 
messages of the two methods of 
computing an aggregate, as a function of 
the number of nodes. 

The curves labeled “central” 
represent an aggregate over the 
distributed data, which is computed at a 
central location.  The curves labeled 
“distributed” represent the situation 
described in Section 3.3 Distributed 
Aggregates, where the aggregate is 
computed independently at each 
location. 
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Figure 2: Message Cost of Aggregation 

 
As expected, based on the linear 

increase in the cardinality of the input 
data, all of the curves in this graph 
approximate lines.  Notice that the two 
“query” curves represent the cost of 
distributing just the query tuple, hence 
the perfect overlap. 

 

4.3 Broadcast Join 
In Figure 3, we present a 

comparison of two join algorithms, one 
which performs the join at a central 
location and one which performs the join 
in the Chord ring. 

Message Cost of Join

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8 9 10 11

Chord Nodes

M
es

sa
ge

s 
(T

up
le

s)

Central Query Central Total Broadcast Query Broadcast Total  
Figure 3: Message Cost of Join 

 
As expected based on the 

increasing cardinality of the broadcast 
data, the messaging costs are polynomial 
in the number of nodes. 

 
4.4 Result Bandwidth 

Figure 4 shows a relatively 
pedestrian graph of result bandwidth as a 
function of the number of nodes for all 
four experiments.  Again, the 
polynomial drop in bandwidth under the 
broadcast join is to be expected.  We 
will discuss the implications of these 
numbers further in Section 5.3 
Performance. 
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5.0 Immediate Results 
In this section we describe the 

short term results of our implementation 
work.  We categorize our results by 
whether they represent an immediate 
success or a systemic problem that we 
were unable to overcome in the short 
term.  Sections 6 through 9 suggest 
future research and long term solutions 
to these problems. 

 
5.1 Successes 

Despite our difficulty with 
integrating database functionality, we 
are currently able to support distributed 
data storage and retrieval on top of a 
Chord ring using the P2 dataflow 
system.  In addition, we have baseline 
code on which to build future research. 

At present, we can store data and 
run lookups, aggregate queries, and joins 
over it.  The performance numbers in 
Section 4.0 Performance are not 
surprising or wonderful, but they match 
exactly what one would expect from 
these implementations. 

The bottom line of this project is 
that, though we were easily able to add 
significant functionality to P2, thanks in 
part to the dataflow framework, there 
remain a number of major challenges 
before our a useful distributed database 
can be built. 

 
5.2 System Design 

Inarguably, the most significant 
problems we encountered during this 
project stemmed from the low-order 
nature of the Overlog language, 
including its inability to handle variable-
length tuples or tuples which contain 
other tuples.  This forced us to decide 
between the potentially major loss of 
flexibility incurred by using Overlog and 
the significantly increased development 

time and complexity due to writing in 
C++. 

Ultimately, we decided to use 
C++ in the hopes that it would let us 
explore more issues by allowing 
flexibility in the schema of the data in 
our distributed database, rather than 
forcing it to be fixed within the same 
Overlog file as the Chord definition. 

After actually attempting to 
implement these operators, we have 
come to appreciate that P2 and PIER are 
systems at opposite ends of a simple 
design decision: the level of integration 
of overlay network and database.  PIER, 
by virtue of the hard DHT interface 
between the two, separates these 
components to the extent that significant 
performance gains will be unrealized 
due to its inability to exploit correlations 
between data, logical locations, and 
physical locations. 

However, Overlog’s current 
inability to separate the underlying 
overlay network from the database 
forces the programmer to either waste 
time working in C++ (though the P2 
base code makes this much easier) or to 
couple the overlay network to the 
database so tightly that the two cannot 
easily be independently modified. 

Our short-term solution to this 
limitation is embodied in the 
combination of the three major design 
decisions in Section 3.0 Implementation, 
and our creation of the “Reflection 
Aggregation” and “Reflection Join” 
elements.  However, we feel that these 
are not valid long-term, general 
solutions.  In Section 6.0 Systems & 
Platforms, we analyze this more 
completely, and provide possible 
solutions. 

One of the original key points of 
this project was to explore algorithms 
and operators for overlay network-aware 
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database query processing.  While 
writing these operators in C++ is not 
totally impractical4, the fact remains that 
it would be a long and arduous task to 
implement the many operators that have 
been suggested to date.  Unfortunately, 
there are limitations imposed by the 
Overlog language itself that present 
significant obstacles to full-scale query 
processing.  Potential improvements, 
such as the ability to include tuples 
within tuples or to deal with variable-
length tuples, deserve further research.  
Issues such as semantics and typing rules 
become critical once these higher-level 
constructs become part of a language.  
See Section 6.3 Languages for a further 
discussion. 

 
5.3 Performance 

Our primary goal in presenting 
the performance graphs in the previous 
section was clearly not to demonstrate 
that our implementation is efficient, but 
rather to demonstrate that it performs 
exactly as expected.  This is a sign that 
the P2 dataflow framework, even when 
used directly in C++, represents a 
significant step forward in the 
abstraction of both overlay network and 
database functionality. 

However, the fact remains that 
thus far this abstraction has come at a 
heavy performance price.  While the P2 
group showed respectable results [2] for 
Chord, large scale databases have much 
more demanding performance targets: 
high end systems are beyond the 
1MtpmC on the TPC-C benchmark, and 
even lower end systems often manage 
10,000tpmC.  During our tests, some 
queries took up to a second over a mere 
200 data points.  This means the current 
implementation is, generously, between 

                                                 
4 Our implementations are on the order 

of 500 lines of C++, plus ~300 lines of test code. 

3 and 8 orders of magnitude slower than 
the top of the line.  While we 
acknowledge that this is an unfair 
comparison, the fact is that with this 
performance disparity there remains no 
reason to consider this work for a 
production system.  We offer possible 
solutions to this issue in Section 6.0 
Systems & Platforms. 

 
6.0 Systems & Platforms 

As described in Section 5.2 
System Design, the P2 and PIER 
systems represent opposite ends of a 
design spectrum, where PIER uses an 
opaque interface between the underlying 
overlay network and database and P2 
would ideally use Overlog, requiring the 
full integration of the two. 

Our short term solution was to 
try and find a middle ground, and we 
settled on using the P2 C++ back end.  
This allowed us to leverage the useful 
dataflow framework without 
constraining us to those computational 
structures expressible in Overlog. 

In this section we propose and 
outline a platform for studying this 
design space, allowing systems from 
both ends of that spectrum to be 
described in one framework and 
language.  Our suggestions are drawn 
directly from the problems we 
encountered during this work, as 
outlined in above sections. 

 
6.1 The Design Space 

Given that PIER and P2 appear, 
in many ways, to be at opposite ends of 
the design space, the natural question 
arises: “What lies in the middle?”  In 
fact, the most successful systems 
projects generally grow out of some 
practical compromise between extremes. 

Based on the conceptual 
simplicity and natural mapping from 
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traditional database iterators to a 
dataflow framework, systems like P2 
provide a very natural way to explore 
this space.  At this point, the problem 
becomes not, “How do we build a 
distributed database?” but, “How do we 
build distributed database systems?”  
The solution no longer lies in the P2 
architecture, but in a combination of 
ideas from dataflow architectures, 
languages, and database systems 
research. 

Fundamental questions about 
distributed systems remain hard to 
answer, in part because we lack a 
common high level framework and 
language with which to describe 
algorithms in such a way as to make 
them executable. 

P2 and Overlog are examples of 
the inherent promise of this work.  
Despite our problems with Overlog, we 
at no point wish to contradict the 
conclusions of [2].  Furthermore, 
without the dataflow code base of P2, we 
could never have made significant 
progress on this problem in so short a 
time. 

However, given a more powerful 
set of tools, as we will outline below, we 
might have met our original, even more 
ambitious goals. 

In this section, we have outlined 
a case for a distributed dataflow database 
platform: a set of research tools for 
studying distributed database systems. 

 
6.2 Dataflow 

In this section, we provide a 
formal justification for the use of a 
dataflow framework.  Beyond their 
inherent simplicity and natural match to 
existing database systems, dataflow 
systems offer a chance to separate the 
concepts of “synchronization” and 
“scheduling” of data, while managing 

the parallelism is a human 
understandable formalism. 

Synchronization refers to the 
need for all inputs to be present before a 
computation can take place, such as the 
two inputs to an add element.  
Scheduling refers to the decision of 
when to actually perform that addition.  
Notice that the point of synchronization 
(when the second operand arrives) 
implies only the earliest point of 
scheduling. 

In general, dataflow formalisms 
provide an effective way to express this 
style of “minimum requirements” for 
program execution. 

Interestingly, even without the 
more formal dataflow language work, 
the structure of P2 actually suggests a 
few simple ways to parallelize the 
system overall: by simply partitioning a 
node into multiple dataflow graphs 
connected by explicit IPC, the various 
graphs can easily be executed in parallel 
without fear of adverse interactions.  
However, the primary justification for 
this split relies on the fact that dataflow 
frameworks are derived from message 
passing systems, and therefore generally 
eschew globally shared state, 

Furthermore, there exists well-
established research in dataflow 
languages and architectures, both of 
which have significant results that can 
easily be carried into this work.  We 
touch on this again in Section 7.0 
Related Work. 

 
6.3 Languages 

P2 is essentially a high-level 
interpreter for a first-order dataflow 
language.  This has some serious 
implications for both performance and 
usability, the two major obstacles to our 
implementation work. 
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Low-order languages and 
programming systems typically severely 
complicate the expression of 
complicated algorithms and systems; 
simple examples can be drawn from 
classic type systems literature [11] and 
the relative complexity of a program 
written in assembly language versus 
Java. 

In fact, we hypothesize that the 
success of Overlog is exactly due to the 
fact that it abstracts the details of the P2 
elements: namely connections, push and 
pull dataflow, and storage, behind a 
simple, easily readable language.  
Overlog raises the level of language 
abstraction, reducing the unnecessary 
details inherent in an implementation, 
e.g. of Chord directly in C++. 

This bears direction on our 
second major design decision, the 
representation of queries as tuples and 
our use of hierarchical tuples.  By using 
a dataflow language with higher level 
constructs, we can capture all the 
benefits of these ideas without resorting 
to C++.  In addition, any research 
platform must provide a way to specify 
new database operators.  Operators in 
C++ may be efficient, especially when 
compared to those written in Overlog, 
but dataflow compiler and architecture 
research has much more to offer [12-14].  
Of particular interest is the suggestion 
that a type system could reduce a higher 
order language to one simple enough to 
implement, even in hardware [15]. 

As we move forward, exact 
semantics and typing rules will be 
required in order to build any large 
system.  The lack of these facilities at 
the C++ level significantly retarded our 
work, as did the textual overhead of 
working in C++.  Ideally, a dataflow 
language should be exponentially more 
expressive for systems like this, allowing 

plug-in style components similar to 
those used in reconfigurable hardware 
systems like JHDL (see Figure 5 of 
[16]). 

 
7.0 Related Work 

In this section we tie the ideas of 
the previous section into several widely 
different fields of research.  This section 
builds on 6.2 Dataflow by suggesting 
past dataflow work on which we can 
capitalize. 

 
7.1 Related Systems Work 

Both in theoretical terms and in 
terms of the actual implementation code, 
P2 is closely based on the Click Modular 
Router from MIT [8]. 

However, a number of recent 
hardware-centric projects have also 
adopted dataflow or process network 
frameworks (Lee shows the two to be 
very similar [17]).  For example, the 
RAMP [18, 19] project, with which G. 
Gibeling is currently heavily involved, is 
attempting to design a dataflow-based 
framework and language (RDL).  The 
original goal was to simulate multi-
processor computer architectures; 
however, the full extent of 
RAMP/RDL’s usage is currently 
unknown, as the language is still in flux. 

In a related vein, the Liberty 
project [20] at Princeton has designed a 
language, compiler, and simulation 
platform for designing low level 
hardware in a style similar to RDL. 

In addition, dataflow design 
patterns have surfaced in recent 
distributed systems such as Google's 
MapReduce [21], which we mention for 
three reasons: it is easily applicable to a 
wide class of problems, it allows 
massive parallelism, and it represents a 
small subset of the overall promise of 
dataflow systems. 
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For a recent survey of dataflow 
related research we refer the reader to 
[22]. 

 
7.2 Related Database Work 

Clearly the most closely related 
database research has already been 
discussed at length throughout this 
paper.  However, research projects such 
as Eddies [23], TelegraphCQ [24], and 
SteMs [25] will fit well into an expanded 
dataflow database platform. 

 
8.0 Conclusions 

In light of the number of 
obstacles encountered during this 
project, it should be clear that there is 
still an immense amount of work to be 
done. 

While this project was only semi-
successful at providing a working 
solution, it does provide a foundation for 
our future research and a sketch what 
that will be.  In addition, our results 
suggest interesting ties to existing 
research in significantly disparate fields 
such as languages, compilers, theory, 
architecture, and digital circuits. 

New tools will be required to 
permit databases, overlay networks, and 
systems issues to be studied within a 
common platform.  This will allow 
detailed study of, among other things, 
the tradeoff involved in determining the 
level of abstraction between the overlay 
network and query processor. 

Distributed systems represent a 
continuously open field of research of 
which distributed databases are a small 
fraction, despite the magnitude of the 
problems there alone.  In this paper we 
have presented our attempts and ideas 
for advancing both fields. 

 

9.0 Future Work 
In addition to giving suggestions 

for the next step in our research, this 
section covers the questions and ideas 
which originally attracted our interest in 
this field, which remain unstudied. 

Based on our attempts chronicled 
in this paper, we conclude that the next 
logical step is to begin design and 
implementation of a distributed dataflow 
database platform.  P2 should be 
considered a proof of concept for this 
platform, as it has allowed us to get this 
far. 

With the proper platform in 
place, the next step is to study 
partitioning data in a widely distributed 
system.  This has major implications for 
performance, as described by Ganesan 
[9] and in Section 3.5 Open Interface. 

We also know of no major 
attempts to study distributed metadata so 
far.  Metadata is one of the big successes 
of the DBMS world, as it allows a 
plethora of optimizations at the query 
planning level. 

In a high level language, 
compiler optimizations and query 
optimizer research converge on the same 
problem, suggesting that the two areas of 
research may cross-pollinate. 

In fact, Eddies [23] and SteMs 
[25] could easily be realized in a 
dataflow framework, perhaps to the 
extent that in many non-deterministic 
languages such as [26] an Eddy can 
almost be written as a first class 
language primitive. 

Storage and its permanence 
remain open questions in the context of 
distributed databases.  Researchers often 
disagree on the utility of permanent 
storage, and we know of few proposals 
aiming to provide it. 
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Figure 1: Database Operators and Simplified Chord in P2 


